
In this tutorial, we'll go through clean coding principles. We'll also understand why clean code is
important and how to achieve that in Java. Further, we'll see if there are any tools available to help
us out.

So, before we jump into the details of clean code, let's understand what do we mean by clean
code. Honestly, there can not be one good answer to this. In programming, some concerns reach
across and hence result in general principles. But then, every programming language and
paradigm present their own set of nuances, which mandates us to adopt befitting practices.

Broadly, clean code can be summarized as a code that any developer can read and
change easily. While this may sound like an oversimplification of the concept, we'll see later in
the tutorial how this builds up. Anywhere we hear about clean code, we perhaps come across
some reference to Martin Fowler. Here is how he describes clean code in one of the places:

Clean Coding in Java
https://www.baeldung.com/java-
clean-code

1. Overview

2. What Is Clean Code?

Any fool can write code that a computer can understand. Good programmers
write code that humans can understand.“

3. Why Should We Care About

T2DSolution

Writing clean code is a matter of personal habit as much as it's a matter of skill. As a developer,
we grow through experience and knowledge over time. But, we must ask why we should invest in
developing clean code after all? We get that others will probably find it easier to read our code,
but is that incentive enough? Let's find out!

Clean coding principles help us achieve a lot of desirable goals related to the software we intend
to produce. Let's go through them to understand it better:

Maintainable Codebase: Any software that we develop has a productive life and during this
period will require changes and general maintenance. Clean code can help develop
software that is easy to change and maintain over time.
Easier Troubleshooting: Software can exhibit unintended behavior due to a variety of internal
or external factors. It may often require a quick turnaround in terms of fixes and availability.
Software developed with clean coding principles is easier to troubleshoot for problems.
Faster Onboarding: Software during its lifetime will see many developers create, update, and
maintain it, with developers joining at different points in time. This requires a quicker
onboarding to keep productivity high, and clean code helps achieve this goal.

Codebases written with clean coding principles exhibit several characteristics that set them apart.
Let's go through some of these characteristics:

Focused: A piece of code should be written to solve a specific problem. It should not
do anything strictly not related to solving the given problem. This applies to all levels of
abstraction in the codebase like method, class, package, or module.
Simple: This is by far the most important and often ignored characteristic of clean code. The
software design and implementation must be as simple as possible, which can help
us achieve the desired outcomes. Increasing complexity in a codebase makes them error-
prone and difficult to read and maintain.
Testable: Clean code, while being simple, must solve the problem at hand. It must be
intuitive and easy to test the codebase, preferably in an automated manner. This
helps establish the baseline behavior of the codebase and makes it easier to change it
without breaking anything.

These are what help us achieve the goals discussed in the previous section. It's beneficial to start
developing with these characteristics in mind compared to refactor later. This leads to a lower
total cost of ownership for the software lifecycle.

Clean Code?

4. Characteristics of Clean Code

Now that we've gone through enough background, let's see how we can incorporate clean coding
principles in Java. Java offers a lot of best practices that can help us write clean code. We'll
categorize them in different buckets and understand how to write clean code with code samples.

While Java doesn't enforce any project structure, it's always useful to follow a consistent
pattern to organize our source files, tests, configurations, data, and other code artifacts
. Maven, a popular build tool for Java, prescribes a particular project structure. While we may not
use Maven, it's always nice to stick to a convention.

Let's see some of the folders that Maven suggests we create:

src/main/java: For source files
src/main/resources: For resource files, like properties
src/test/java: For test source files
src/test/resources: For test resource files, like properties

Similar to this, there are other popular project structures like Bazel suggested for Java, and we
should choose one depending on our needs and audience.

Following naming conventions can go a long way in making our code readable and
hence, maintainable. Rod Johnson, the creator of Spring, emphasizes the importance of naming
conventions in Spring:

Java prescribes a set of rules to adhere to when it comes to naming anything in Java. A well-
formed name does not only help in reading the code, but it also conveys a lot about the intention
of the code. Let's take some examples:

Classes: Class in terms of object-oriented concepts is a blueprint for objects which often

5. Clean Coding in Java

5.1. Project Structure

5.2. Naming Convention

“… if you know what something does, you got a pretty good chance guessing
the name of the Spring class or interface for it …”“

http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://www.baeldung.com/bazel-build-tool
https://blog.atomist.com/eighteen-years-of-spring/
https://blog.atomist.com/eighteen-years-of-spring/
https://www.oracle.com/technetwork/java/codeconventions-135099.html

represent real-world objects. Hence it's meaningful to use nouns to name classes describing
them sufficiently:

Variables: Variables in Java capture the state of the object created from a class. The name of
the variable should describe the intent of the variable clearly:

Methods: Methods in Java are always part of classes and hence generally represent an action
on the state of the object created from the class. It's hence useful to name methods using
verbs:

While we've only discussed how to name an identifier in Java, please note that there are additional
best practices like camel casing, which we should observe for readability. There can be more
conventions related to naming interfaces, enums, constants as well.

A source file can contain different elements. While Java compiler enforces some structure, a
large part is fluid. But adhering to a specific order in which to places elements in a source file
can significantly improve code readability. There are multiple popular style-guides to take
inspiration from, like one by Google and another by Spring.

Let's see how should a typical ordering of elements in a source file look:

Package statement
Import statements

All static imports
All non-static imports

public class Customer {

}Copy

public class Customer {

 private String customerName;

}Copy

public class Customer {

 private String customerName;

 public String getCustomerName() {

 return this.customerName;

 }

}Copy

5.3. Source File Structure

https://www.baeldung.com/java-pojo-class#javabeans
https://www.baeldung.com/java-pojo-class#javabeans
https://google.github.io/styleguide/javaguide.html
https://github.com/spring-projects/spring-framework/wiki/Code-Style

Exactly one top-level class
Class variables
Instance variables
Constructors
Methods

Apart from the above, methods can be grouped based on their functionality or scope.
There is no one good convention, and the idea should be decided once and then followed
consistently.

Let's see a well-formed source file:

We all know that it is easier to read and understand short paragraphs compared to a large block of
text. It is not very different when it comes to reading code as well. Well-placed and consistent
whitespaces and blank lines can enhance the readability of the code.

The idea here is to introduce logical groupings in the code which can help organize thought

/src/main/java/com/baeldung/application/entity/Customer.java

package com.baeldung.application.entity;

import java.util.Date;

public class Customer {

 private String customerName;

 private Date joiningDate;

 public Customer(String customerName) {

 this.customerName = customerName;

 this.joiningDate = new Date();

 }

 public String getCustomerName() {

 return this.customerName;

 }

 public Date getJoiningDate() {

 return this.joiningDate;

 }

}Copy

5.4. Whitespaces

processes while trying to read it through. There is no one single rule to adopt here but a general
set of guidelines and an inherent intention to keep readability at the center of it:

Two blank lines before starting static blocks, fields, constructors and inner classes
One blank line after a method signature that is multiline
A single space separating reserved keywords like if, for, catch from an open parentheses
A single space separating reserved keywords like else, catch from a closing parentheses

The list here is not exhaustive but should give us a bearing to head towards.

Although quite trivial, almost any developer would vouch for the fact that a well-indented code
is much easier to read and understand. There is no single convention for code indentation in
Java. The key here is to either adopt a popular convention or define a private one and then follow
it consistently across the organization.

Let's see some of the important indentation criteria:

A typical best practice is to use four spaces, a unit of indentation. Please note that some
guidelines suggest a tab instead of spaces. While there is no absolute best practice here, the
key remains consistency!
Normally, there should be a cap over the line length, but this can be set higher than
traditional 80 owing to larger screens developers use today.
Lastly, since many expressions will not fit into a single line, we must break them
consistently:

Break method calls after a comma
Break expressions before an operator
Indent wrapped lines for better readability (we here at Baeldung prefer two spaces)

Let's see an example:

Parameters are essential for methods to work as per specification. But, a long list of
parameters can make it difficult for someone to read and understand the code. So,
where should we draw the line? Let's understand the best practices which may help us:

Try to restrict the number of parameters a method accepts, three parameters can be one

5.5. Indentation

List<String> customerIds = customer.stream()

 .map(customer -> customer.getCustomerId())

 .collect(Collectors.toCollection(ArrayList::new));Copy

5.6. Method Parameters

good choice
Consider refactoring the method if it needs more than recommended parameters, typically a
long parameter list also indicate that the method may be doing multiple things
We may consider bundling parameters into custom-types but must be careful not to dump
unrelated parameters into a single type
Finally, while we should use this suggestion to judge the readability of the code, we must not
be pedantic about it

Let's see an example of this:

Hardcoding values in code can often lead to multiple side effects. For instance, it can lead to
duplication, which makes change more difficult. It can often lead to undesirable behavior if
the values need to be dynamic. In most of the cases, hardcoded values can be refactored in one of
the following ways:

Consider replacing with constants or enums defined within Java
Or else, replace with constants defined at the class level or in a separate class file
If possible, replace with values which can be picked from configuration or environment

Let's see an example:

Again, there is no strict guideline around this to adhere to. But we must be cognizant about the
fact the some will need to read and maintain this code later on. We should pick a convention that
suits us and be consistent about it.

public boolean setCustomerAddress(String firstName, String lastName, String streetAddress,

 String city, String zipCode, String state, String country, String phoneNumber) {

}

// This can be refactored as below to increase readability

public boolean setCustomerAddress(Address address) {

}Copy

5.7. Hardcoding

private int storeClosureDay = 7;

// This can be refactored to use a constant from Java

private int storeClosureDay = DayOfWeek.SUNDAY.getValue()Copy

https://www.baeldung.com/cs/refactoring

Code comments can be beneficial while reading code to understand the non-trivial aspects
. At the same time, care should be taken to not include obvious things in the comments. This
can bloat comments making it difficult to read the relevant parts.

Java allows two types of comments: Implementation comments and documentation comments.
They have different purposes and different formats, as well. Let's understand them better:

Documentation/JavaDoc Comments
The audience here is the users of the codebase
The details here are typically implementation free, focusing more on the specification
Typically useful independent of the codebase

Implementation/Block Comments
The audience here is the developers working on the codebase
The details here are implementation-specific
Typically useful together with the codebase

So, how should we optimally use them so that they are useful and contextual?

Comments should only complement a code, if we are not able to understand the code
without comments, perhaps we need to refactor it
We should use block comments rarely, possibly to describe non-trivial design decisions
We should use JavaDoc comments for most of our classes, interfaces, public and protected
methods
All comments should be well-formed with a proper indentation for readability

Let's see an example of meaningful documentation comment:

5.8. Code Comments

/**

* This method is intended to add a new address for the customer.

* However do note that it only allows a single address per zip

* code. Hence, this will override any previous address with the

* same postal code.

*

* @param address an address to be added for an existing customer

*/

/*

* This method makes use of the custom implementation of equals

* method to avoid duplication of an address with same zip code.

*/

https://www.baeldung.com/cs/clean-code-comments

Anyone who has ever laid their hands onto production code for debugging has yearned for more
logs at some point in time. The importance of logs can not be over-emphasized in
development in general and maintenance in particular.

There are lots of libraries and frameworks in Java for logging, including SLF4J, Logback. While they
make logging pretty trivial in a codebase, care must be given to logging best practices. An
otherwise done logging can prove to be a maintenance nightmare instead of any help. Let's go
through some of these best practices:

Avoid excessive logging, think about what information might be of help in troubleshooting
Choose log levels wisely, we may want to enable log levels selectively on production
Be very clear and descriptive with contextual data in the log message
Use external tools for tracing, aggregation, filtering of log messages for faster analytics

Let's see an example of descriptive logging with right level:

While the previous section highlights several code formatting conventions, these are not the only
ones we should know and care about. A readable and maintainable code can benefit from a large
number of additional best practices that have been accumulated over time.

We may have encountered them as funny acronyms over time. They essentially capture the
learnings as a single or a set of principles that can help us write better code. However,
note that we should not follow all of them just because they exist. Most of the time, the benefit
they provide is proportional to the size and complexity of the codebase. We must access our
codebase before adopting any principle. More importantly, we must remain consistent with them.

SOLID is a mnemonic acronym that draws from the five principles it sets forth for writing
understandable and maintainable software:

public addCustomerAddress(Address address) {

}Copy

5.9. Logging

logger.info(String.format("A new customer has been created with customer Id: %s", id));Copy

6. Is That All of It?

6.1. SOLID

https://www.baeldung.com/solid-principles

Single Responsibility Principle: Every interface, class, or method we define should
have a clearly defined goal. In essence, it should ideally do one thing and do that well.
This effectively leads to smaller methods and classes which are also testable.
Open-Closed Principle: The code that we write should ideally be open for extension but
closed for modification. What this effectively means is that a class should be written in a
manner that there should not be any need to modify it. However, it should allow for changes
through inheritance or composition.
Liskov Substitution Principle: What this principle states is that every subclass or derived
class should be substitutable for their parent or base class. This helps in reducing
coupling in the codebase and hence improve reusability across.
Interface Segregation Principle: Implementing an interface is a way to provide a specific
behavior to our class. However, a class must not need to implement methods that it
does not require. What this requires us to do is to define smaller, more focussed interfaces.
Dependency Inversion Principle: According to this principle, classes should only depend
on abstractions and not on their concrete implementations. This effectively means
that a class should not be responsible for creating instances for their dependencies. Rather,
such dependencies should be injected into the class.

DRY stands for “Don's Repeat Yourself”. This principle states that a piece of code should not be
repeated across the software. The rationale behind this principle is to reduce duplication and
increase reusability. However, please note that we should be careful in adopting this rather too
literally. Some duplication can actually improve code readability and maintainability.

KISS stands for “Keep It Simple, Stupid”. This principle states that we should try to keep the
code as simple as possible. This makes it easy to understand and maintain over time. Following
some of the principles mentioned earlier, if we keep our classes and methods focussed and small,
this will lead to simpler code.

TDD stands for “Test Driven Development”. This is a programming practice that asks us to
write any code only if an automated test is failing. Hence, we've to start with the design
development of automated tests. In Java, there are several frameworks to write automated
unit tests like JUnit and TestNG.

6.2. DRY & KISS

6.3. TDD

https://www.baeldung.com/cs/liskov-substitution-principle
https://www.baeldung.com/cs/dry-software-design-principle
https://www.baeldung.com/cs/kiss-software-design-principle
https://www.baeldung.com/java-test-driven-list

The benefits of such practice are tremendous. This leads to software that always works as
expected. As we always start with tests, we incrementally add working code in small chunks. Also,
we only add code if the new or any of the old tests fail. Which means that it leads to reusability as
well.

Writing clean code is not just a matter of principles and practices, but it's a personal habit. We
tend to grow as better developers as we learn and adapt. However, to maintain consistency across
a large team, we've also to practice some enforcement. Code reviews have always been a
great tool to maintain consistency and help the developers grow through constructive
feedback.

However, we do not necessarily have to validate all these principles and best practices manually
during code reviews. Freddy Guime from Java OffHeap talks about the value of automating some
of the quality checks to end-up with a certain threshold with the code quality all the time.

There are several tools available in the Java ecosystem, which take at least some of these
responsibilities away from code reviewers. Let's see what some of these tools are:

Code Formatters: Most of the popular Java code editors, including Eclipse and IntelliJ, allows
for automatic code formatting. We can use the default formatting rules, customize them, or
replace them with custom formatting rules. This takes care of a lot of structural code
conventions.
Static Analysis Tools: There are several static code analysis tools for Java, including
SonarQube, Checkstyle, PMD and SpotBugs. They have a rich set of rules which can be used
as-is or customized for a specific project. They are great in detecting a lot of code smells like
violations of naming conventions and resource leakage.

In this tutorial, we've gone through the importance of clean coding principles and characteristics
that clean code exhibits. We saw how to adopt some of these principles in practice, which
developing in Java. We also discussed other best practices that help to keep the code readable and
maintainable over time. Finally, we discussed some of the tools available to help us in this
endeavor.

To sum up, it's important to note that all of these principles and practices are there to make our
code cleaner. This is a more subjective term and hence, must be evaluated contextually.

While there are numerous sets of rules available to adopt, we must be conscious of our maturity,

7. Tools for Help

8. Conclusion

https://www.javaoffheap.com/2019/10/episode-47-microsoft-flexing-its-java-muscle-javafx-is-alive-and-well-and-would-you-approve-my-low-quality-pr.html
https://www.baeldung.com/sonar-qube
https://www.baeldung.com/checkstyle-java
https://www.baeldung.com/pmd
https://spotbugs.github.io/
https://www.baeldung.com/cs/code-smells

culture, and requirements. We may have to customize or for that matter, devise a new set of rules
altogether. But, whatever may be the case, it's important to remain consistent across the
organization to reap the benefits.

Revision #2
Created Sun, Aug 20, 2023 3:15 PM by Tình Leo
Updated Sun, Aug 20, 2023 3:16 PM by Tình Leo

